Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Bölling R. (1975). Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig groß werden. Math. Nachr. 67: 157–179
2. Bump D., Friedberg S. and Hoffstein J. (1990). Nonvanishing theorems for L-functions of modular forms and their derivatives. Invent. Math. 102: 543–618
3. Cassels J.W.S. (1964). Arithmetic on curves of genus 1, VI. The Tate-Šafarevič group can be arbitrarily large. J. reine angew. Math. 214(215): 65–70
4. Cassels J.W.S. (1965). Arithmetic on curves of genus 1, VIII. On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217: 180–199
5. Cremona J.E. (1997). Algorithms for Modular Elliptic Curves, 2nd edn. Cambridge University Press, Cambridge
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献