1. Die Ordnung der Schafarewitsch–Tate Gruppe kann beliebig groß werden;Bölling;Math. Nachr.,1975
2. Arithmetic on curves of genus 1 (VI). The Tate–Šafarevič group can be arbitrarily large;Cassels;J. Reine Angew. Math.,1964
3. Arithmetic on curves of genus 1 (VIII). On the conjectures of Birch and Swinnerton–Dyer;Cassels;J. Reine Angew. Math,1965
4. Some examples of 5 and 7 descent for elliptic curves over Q;Fisher;J. Eur. Math. Soc.,2001
5. Lehrbuch der Algebra, III;Fricke,1928