Abstract
Large-scale sublinearly Lipschitz maps have been introduced by Yves Cornulier in order to precisely state his theorems about asymptotic cones of Lie groups. In particular, Sublinearly bi-Lipschitz Equivalences (SBE) are a weak variant of quasi-isometries, with the only requirement of still inducing bi-Lipschitz maps at the level of asymptotic cones. We focus here on hyperbolic metric spaces and study properties of boundary extensions of SBEs, reminiscent of quasi-Möbius (or quasisymmetric) mappings. We give a dimensional invariant of the boundary that allows to distinguish hyperbolic symmetric spaces up to SBE, answering a question of Druţu.
Publisher
Cambridge University Press (CUP)
Reference29 articles.
1. Dimension conforme et sphère à l’infini des variétés à courbure négative;Pansu;Ann. Acad. Sci. Fenn. Ser. A I,1989
2. Equimorphisms of hyperbolic spaces;Efremovich;Izv. Akad. Nauk SSSR Ser. Mat.,1964
3. QUASI-ISOMETRY INVARIANTS AND ASYMPTOTIC CONES
4. Homogeneous Riemannian spaces of negative curvature;Alekseevski;Mat. Sb. (N.S.),1975
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sublinear bilipschitz equivalence and sublinearly Morse boundaries;Journal of the London Mathematical Society;2024-07-20
2. Sublinear quasiconformality and the large-scale geometry of Heintze groups;Conformal Geometry and Dynamics of the American Mathematical Society;2020-06-19
3. On sublinear bilipschitz equivalence of groups;Annales scientifiques de l'École normale supérieure;2019