Sublinear bilipschitz equivalence and sublinearly Morse boundaries

Author:

Pallier Gabriel1,Qing Yulan2ORCID

Affiliation:

1. Univ. Lille CNRS, UMR 8524 ‐ Laboratoire Paul Painlevé Lille France

2. Department of Mathematics University of Tennessee at Knoxville Knoxville Tennessee USA

Abstract

AbstractA sublinear bilipschitz equivalence (SBE) between metric spaces is a map from one space to another that distorts distances with bounded multiplicative constants and sublinear additive error. Given any sublinear function, the associated sublinearly Morse boundaries are defined for all geodesic proper metric spaces as a quasi‐isometrically invariant and metrizable topological space of quasi‐geodesic rays. In this paper, we prove that sublinearly‐Morse boundaries of proper geodesic metric spaces are invariant under suitable SBEs. A tool in the proof is the use of sublinear rays, that is, sublinear bilispchitz embeddings of the half line, generalizing quasi‐geodesic rays. As an application, we distinguish a pair of right‐angled Coxeter groups brought up by Behrstock up to SBE. We also show that under mild assumptions, generic random walks on countable groups are sublinear rays.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

Wiley

Reference36 articles.

1. Metric Spaces of Non-Positive Curvature

2. I.Choi Limit laws on Outer space Teichmmüller space and CAT(0) spaces. arXiv:2207.06597

3. Spaces with nonpositive curvature and their ideal boundaries

4. Dimension of asymptotic cones of Lie groups

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3