This article analyzes sublinearly quasisymmetric homeomorphisms (generalized quasisymmetric mappings), and draws applications to the sublinear large-scale geometry of negatively curved groups and spaces. It is proven that those homeomorphisms lack analytical properties but preserve a conformal dimension and appropriate function spaces, distinguishing certain (nonsymmetric) Riemannian negatively curved homogeneous spaces, and Fuchsian buildings, up to sublinearly biLipschitz equivalence (generalized quasi-isometry).