Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications

Author:

SIZYUK V.,HASSANEIN A.,SIZYUK T.

Abstract

Laser-produced plasma (LPP) devices are being developed as a light source for the extreme ultraviolet (EUV) lithography applications. One concern of such devices is to increase the conversion efficiency of laser energy to EUV light. A new idea based on the initiation and confinement of cumulative plasma jet inside a hollow laser beam is developed and simulated. The integrated computer model (HEIGHTS) was used to simulate the plasma behavior and the EUV radiation output in the LPP devices. The model takes into account plasma heat conduction and magnetohydrodynamic processes in a two-temperature approximation, as well as detailed photon radiation transport in 3D Monte Carlo model. The model employs cylindrical 2D version of a total variation-diminishing scheme (for the plasma hydrodynamics) and an implicit scheme with the sparse matrix linear solver (to describe heat conduction). Numerical simulations showed that the EUV efficiency of the proposed hollow-beam LPP device to be higher than the current standard devices.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3