New proposed ITER divertor design using carbon insert on tungsten to mitigate ELMs and secondary radiation effects on nearby components

Author:

Sizyuk V.,Hassanein A.

Abstract

AbstractBuilding a successful device for the magnetic fusion energy production is a great challenge. ITER is an international project of the tokamak based magnetic fusion design being developed for the demonstration of the feasibility of thermonuclear technologies for future realization of successful commercial fusion energy. A key obstacle to a successful magnetic fusion energy production is however, the performance during abnormal events including plasma disruptions and edge-localized modes (ELMs). A credible reactor design must tolerate at least a few of these transient events without serious consequences such as melting of the structure. This paper investigates and compares the performance of the current ITER tokamak design during two types of transient events, i.e., ELMs occurring at normal operation and disruptions during abnormal operation. We simulated the divertor components response using our integrated 3D HEIGHTS package. The simulations include self-consistent modeling of the interaction of the released core plasma particles with the initial solid divertor material, energy deposition processes, vaporization of divertor material, secondary plasma formation and MHD evolution, incident core particles collisions and scattering from this dense secondary plasma, photon radiation of secondary plasma, and the resulting heat loads on nearby components. Our simulations showed that using a small carbon insert around the strike point can significantly reduce the overall expected damage on the tungsten dome structure, reflector plates, and prevent tungsten vaporization and its potential core plasma contamination.

Funder

Office of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3