Studies of the interaction of an intense laser beam normally incident on an overdense plasma

Author:

Shoucri Magdi,Afeyan Bedros

Abstract

AbstractWe present two contrasting cases of the interaction of a high intensity laser beam with overdense plasma, namely the case of a circular polarization, and the case of a linear polarization of the laser beam. An Eulerian-Vlasov code is used for the numerical solution of the one-dimensional relativistic Vlasov-Maxwell set of equations, for both electrons and ions. The laser beam is incident normally on the plasma surface. We consider the case when the laser wave free space wavelength λ0 is greater than the scale length of the jump in the plasma density at the plasma edge Ledge0 ≫ Ledge) and the ratio of the plasma density to the critical density is such that n/ncr ≫ 1. The incident high intensity laser radiation is pushing the electrons at the plasma surface through the ponderomotive pressure, producing a sharp density gradient at the plasma surface. There is a build-up of the electron density at this sharp edge that creates a space-charge, giving rise to a longitudinal electric field. The results obtained differ substantially in several aspects when circular or linear polarization for the incident laser wave is considered. In the case of a circular polarization, the radiation pressure is pushing the sharp edge in the forward direction, and the ions are accelerated and reach a free streaming expansion phase where they are neutralized by the electrons. For the case of a linear polarization, there is a standing structure with a sharp edge that forms at the wave front, and in this case, the electrons at the plasma edge oscillate nonlinearly in the field of the wave, which periodically goes to zero. This results in an important distorsion in the reflected electromagnetic wave that includes the generation of harmonics. We present two simulations to illustrate the differences between these two cases. The generation and propagation of collisionless shock waves in these systems are investigated. The results underline the importance of including the ion dynamics in the interaction of high intensity laser waves with overdense plasmas.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3