A numerical study of ponderomotive ion acceleration in a dense plasma driven by a circularly polarized high-intensity laser beam normally incident on thin foils

Author:

Shoucri Magdi,Vidal François,Matte Jean-Pierre

Abstract

AbstractWe use an Eulerian Vlasov code to study the efficient ion acceleration in dense targets by the ponderomotive force of a high-intensity circularly polarized laser beam, normally incident on a dense plasma. The code solves the one-dimensional relativistic Vlasov–Maxwell equations for both electrons and ions. We follow in details the mechanism of formation and evolution of a double-layer structure, where electrons are pushed steadily in the forward direction by the ponderomotive force of the laser beam, trapping an ion population, while an induced space charge electric field pulls ions behind them, forming a double-layer structure supported by the strong ponderomotive pressure of the intense laser beam. We consider the case of a high-density deuterium plasma with n/ncr = 100, where ncr is the critical density. Three cases are studied, by varying the width of the dense target and the intensity of the laser beam (with the normalized vector potential or quiver momentum a0 = 50 and a0 = 100), to follow the physical processes involved in the ion acceleration and the final formation of a neutral plasma jet ejected from the back of the target. We follow the transition from a situation where the laser pulse radiation pressure is acting on the double layer in the target, to a situation where below a given thickness a fraction of the laser energy is transmitted through the target. The absence of noise in the Eulerian Vlasov code allows us to follow accurately the evolution of the phase-space structures of the distribution functions.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference31 articles.

1. Proton acceleration mechanisms in high-intensity laser interaction with thin foils;d'Humières;Phys. Plasmas,2005

2. Phase space dynamics after the breaking of a relativistic Langmuir wave in a thermal plasma

3. Ponderomotive ion acceleration in dense plasmas at super-high laser intensities

4. Ion acceleration and plasma jets driven by a high intensity laser beam normally incident on thin foils

5. Numerical simulation of Wake-field acceleration using an Eulerian Vlasov code;Shoucri;Commun. Comput. Phys.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3