Formation of double layers and evolution of the distribution functions during ion acceleration driven by a high-intensity short laser pulse normally incident on thin foils

Author:

Shoucri M.,Vidal F.,Matte J-P.

Abstract

AbstractWe use an Eulerian Vlasov code, which solves the one-dimensional relativistic Vlasov–Maxwell equations for both electrons and ions, to follow in details the evolution of the distribution functions and the mechanism of the formation and evolution of double layers during ion acceleration driven by a high-intensity circularly polarized short laser pulse (12 ω−1 where ω is the laser angular frequency) normally incident on a thin dense foil. We compare three cases with a high-density deuterium plasma target of total thickness 1.767 cω−1 and constant n/ncr = 100, where ncr is the critical density, and where the laser intensity is varied from a situation where the target is opaque to the laser pulse (normalized vector potential or quiver momentum a0 = 80), to a situation where, above a critical laser intensity, a very small fraction of the laser pulse is transmitted through the target (a0 = 90), and finally to a situation where a more important fraction is transmitted through the target (a0 = 100). The dynamics of ion and electron acceleration are quite different in the three cases, and are followed in detail by the Eulerian Vlasov code, which allows an accurate representation of the distribution function. In the intermediate case, the Vlasov code has revealed a remarkably well-developed spiral structure in the phase space of the electron distribution function, which is associated with large sawtooth modulations in the electron density profiles.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3