Observation of laminar–turbulent transition of a yield stress fluid in Hagen–Poiseuille flow

Author:

GÜZEL B.,BURGHELEA T.,FRIGAARD I. A.,MARTINEZ D. M.

Abstract

We investigate experimentally the transition to turbulence of a yield stress shear-thinning fluid in Hagen–Poiseuille flow. By combining direct high-speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equal or exceed the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behaviour of the yield stress fluid is somewhat similar to a (simpler) shear-thinning fluid. Finally, we have observed the shape of slugs during transition and found their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3