Asymmetry and intermittency in the rheo-inertial transition to turbulence in pipe flow

Author:

Charles Antoine1ORCID,Peixinho Jorge2ORCID,Ribeiro Thierry3ORCID,Azimi Sam4ORCID,Rocher Vincent4,Baudez Jean-Christophe1ORCID,Bahrani S. Amir1ORCID

Affiliation:

1. IMT Nord Europe, Institut Mines-Télécom, Center for Energy and Environment 1 , 59000 Lille, France

2. Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, PIMM, HESAM Université 2 , 75013 Paris, France

3. Institut Polytechnique UniLaSalle, Université d'Artois 3 , ULR 7519, 19 rue Pierre Waguet, 60000 Beauvais, France

4. SIAAP—Service public pour l'assainissement francilien, Direction Innovation 4 , 82 Avenue Kléber, 92700 Colombes, France

Abstract

Transition to turbulence in pipe has been extensively studied but is still not completely understood and even more for non-Newtonian fluids. We focus here on yield stress shear-thinning fluids and the mechanism leading to the transition in pipe, the so-called rheo-inertial transition to turbulence. An experimental setup has enabled us to identify flow regimes in a cylindrical pipe, using both flow visualizations and pressure drops measurements for a range of Reynolds numbers. We delimited the non-Newtonian specific regime in the laminar-turbulent transition triggered at a critical Reynolds number below the turbulent puffs onset. This pre-transition regime is associated with a velocity profile asymmetry in which its degree and position evolve as the Reynolds number increases. The origin for the stability of this rheo-inertial regime is discussed, as it could be due to a competition between the nonlinear contributions of rheological behavior and flow inertia. Beyond this regime, we quantified the intermittence of puff transit, revealing the delay to turbulence. We spotted for the first time a different rheo-inertial transitional behavior in the intermittency evolution vs Reynolds number, displaying a smoother transition on a broader range. Finally, the critical Reynolds numbers for different yield stresses are compared with previous works, and the novelty is the linear increase in the delay to turbulent puffs with the yield stress.

Funder

MOCOPEE French Research Program

French region Hauts-de-France

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3