Enhancing drilling operations: prioritizing wellbore integrity, formation preservation, and effective mud waste control (case study)

Author:

Elrayah Ahmed Abdelaziz IbrahimORCID

Abstract

AbstractThis study examined the issues of wellbore instability encountered during the drilling of the vertical exploration Al-Rateena-1 well, Block 25D, Al-Rawat Field, Sudan. Measurements of the wellbore diameter revealed significant damage to the formation interval between 2775 and 2925 m. This damage released approximately 800 barrels of drill cuttings from the affected zone and overlying formations. A comprehensive wellbore stability assessment was conducted to identify the root causes of instability and develop strategies to mitigate future occurrences. The assessment involved a thorough analysis of the pore, vertical, effective vertical, and minimum and maximum horizontal pressures. All of these parameters play a crucial role in maintaining wellbore integrity. This study also evaluated the potential impact of these parameters on groundwater and soil quality, leading to the development of an efficient waste management system. The safe mud weight range for the well was determined to be between 13.5 and 15.5 pounds per gallon (PPG). However, the drilling fluid used during the operation had a significantly lower density of only 10 PPG. This ultimately leads to the collapse of the wellbore wall. Examination of drilling cuttings revealed elevated levels of various heavy metals. These heavy metals included Lead (94.12 ppm), Mercury (62.87 ppm), Nickel (1403 ppm), Copper (343 ppm), Calcium (23132.72 ppm), Magnesium (3700 ppm), and Barium (16000 ppm). These elements pose a significant threat to both surface water and groundwater quality. It is possible that they also contributed to the wellbore wall collapse. It was hypothesized that the interaction between these elements and the water-based drilling fluid or its additives could have triggered the collapse event. The findings of this study highlight the importance of conducting comprehensive wellbore stability assessments before drilling. Such assessments should incorporate detailed investigations, modelling, calculations, and simulations of various parameters that influence wellbore stability. In addition, careful consideration must be given to the potential environmental impacts of drilling fluids and cuttings, particularly in areas with sensitive ecosystems. The wellbore instability in the vertical exploration Al-Rateena-1 well was primarily caused by the use of an underweight drilling fluid. This underweight drilling fluid results in the collapse of the wellbore wall. Elevated levels of heavy metals in drill cuttings suggest a potential impact on groundwater quality. It is also possible that they contributed to the wellbore instability. Comprehensive wellbore stability assessments are essential to prevent similar incidents in the future. This study provides a detailed account of wellbore instability. This includes the identification of root causes and the development of preventive measures. This study also highlights the potential environmental impact of drilling fluids and cuttings. The findings of this study can help improve drilling practices and environmental protection in the oil and gas industry.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3