Abstract
The head-on collision of a droplet onto a liquid layer of the same material, backed bya solid surface, was experimentally and computationally investigated, with emphasis on the transition from bouncing of the droplet to its absorption by the film for given dropletWeber number, We, and the film thickness scaled by the droplet radius, Hf. Experimental results show that while absorption is favoured with increasing We, there exists a range around Hf ≈, 1 over which this tendency is moderated. This local moderation in turn corresponds to a regime, 11 ≲ We ≲ 14, over which increasing Hf from a small value leads to a triple reversalbehaviour of absorption, bouncing, absorption again, and bouncing again. The collision dynamics including evolution of the surface contours of the droplet and film, as well as the energy budgets, were then simulated by using a front-tracking technique. For collisionsleading to absorption and partial absorption, for which part of the absorbed droplet is subsequently ejected from the film, rupture and hence merging of the interfaces were manually imposed at an instant that leads to agreement between the subsequent calculated and experimental images. The simulation satisfactorily identified the different factors influencing the observed non-monotonic response of the collision event.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献