LIF-based quantification of the species transport during droplet impact onto thin liquid films

Author:

Ennayar Hatim,Brockmann Philipp,Hussong Jeanette

Abstract

AbstractIn the present study, laser-induced fluorescence (LIF) is used to investigate the mixing process of a droplet impacting onto a thin liquid film. A robust multidimensional calibration procedure is developed enabling the extraction of local instantaneous dye concentrations as well as film heights. A series of validation measurements are conducted confirming a low reconstruction error of$$4.53\%$$4.53%. The impact-induced mixing process is thoroughly investigated across various liquid film thicknesses to examine the propagation of the mixing zone and the instantaneous radial concentration gradients within it. It is shown that the maximum extent of the mixing zone scales inversely proportional with the thickness of the liquid film. Within our experiments, we discover the formation of wall-induced vortex ring instabilities subsequent to impact. The disintegration of vortex rings during droplet impact significantly enhances convection-driven mixing, as quantified by the coefficient of variation.Graphical abstract

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3