Drop impact on superheated surfaces: from capillary dominance to nonlinear advection dominance

Author:

Chantelot PierreORCID,Lohse DetlefORCID

Abstract

Ambient air cushions the impact of drops on solid substrates, an effect usually revealed by the entrainment of a bubble, trapped as the air squeezed under the drop drains and liquid–solid contact occurs. The presence of air becomes evident for impacts on very smooth surfaces, where the gas film can be sustained, allowing drops to bounce without wetting the substrate. In such a non-wetting situation, Mandre & Brenner (J. Fluid Mech., vol. 690, 2012, p. 148) numerically and theoretically evidenced that two physical mechanisms can act to prevent contact: surface tension and nonlinear advection. However, the advection dominated regime has remained hidden in experiments as liquid–solid contact prevents rebounds being realised at sufficiently large impact velocities. By performing impacts on superheated surfaces, in the so-called dynamical Leidenfrost regime (Tran et al., Phys. Rev. Lett., vol. 108, issue 3, 2012, p. 036101), we enable drop rebound at higher impact velocities, allowing us to reveal this regime. Using high-speed total internal reflection, we measure the minimal gas film thickness under impacting drops, and provide evidence for the transition from the surface tension to the nonlinear inertia dominated regime. We rationalise our measurements through scaling relationships derived by coupling the liquid and gas dynamics, in the presence of evaporation.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The skating of drops impacting over gas or vapour layers;Journal of Fluid Mechanics;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3