Mean momentum balance in moderately favourable pressure gradient turbulent boundary layers

Author:

METZGER M.,LYONS A.,FIFE P.

Abstract

Moderately favourable pressure gradient turbulent boundary layers are investigated within a theoretical framework based on the unintegrated two-dimensional mean momentum equation. The present theory stems from an observed exchange of balance between terms in the mean momentum equation across different regions of the boundary layer. This exchange of balance leads to the identification of distinct physical layers, unambiguously defined by the predominant mean dynamics active in each layer. Scaling domains congruent with the physical layers are obtained from a multi-scale analysis of the mean momentum equation. Scaling behaviours predicted by the present theory are evaluated using direct measurements of all of the terms in the mean momentum balance for the case of a sink-flow pressure gradient generated in a wind tunnel with a long development length. Measurements also captured the evolution of the turbulent boundary layers from a non-equilibrium state near the wind tunnel entrance towards an equilibrium state further downstream. Salient features of the present multi-scale theory were reproduced in all the experimental data. Under equilibrium conditions, a universal function was found to describe the decay of the Reynolds stress profile in the outer region of the boundary layer. Non-equilibrium effects appeared to be manifest primarily in the outer region, whereas differences in the inner region were attributed solely to Reynolds number effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3