Mean force structure and its scaling in rough-wall turbulent boundary layers

Author:

Mehdi Faraz,Klewicki J. C.,White C. M.

Abstract

AbstractThe combined roughness/Reynolds number problem is explored. Existing and newly acquired data from zero pressure gradient rough-wall turbulent boundary layers are used to clarify the leading order balances of terms in the mean dynamical equation. For the variety of roughnesses examined, it is revealed that the mean viscous force retains dominant order above (and often well above) the roughness crests. Mean force balance data are shown to be usefully organized relative to the characteristic length scale, which is equal or proportional to the width of the region from the wall to where the leading order mean dynamics become described by a balance between the mean and turbulent inertia. This is equivalently the width of the region from the wall to where the mean viscous force loses leading order. For both smooth-wall and rough-wall flows, the wall-normal extent of this region consistently ends just beyond the zero-crossing of the turbulent inertia term. In smooth-wall flow this characteristic length is a known function of Reynolds number. The present analyses indicate that for rough-wall flows the wall-normal position where the mean dynamics become inertial is an irreducible function of roughness and Reynolds number, as it is an inherent function of the relative scale separations between the inner, roughness, and outer lengths. These findings indicate that, for any given roughness, new dynamical regimes will typically emerge as the Reynolds number increases. For the present range of parameters, there appear to be three identifiable regimes. These correspond to the ratio of the equivalent sand grain roughness to the characteristic length being less than, equal to, or greater than$O(1)$. The relative influences of the inner, outer, and roughness length scales on the characteristic length are explored empirically. A prediction for the decay rate of the mean vorticity is developed via extension of the smooth-wall theory. Existing data are shown to exhibit good agreement with this extension. Overall, the present results appear to expose unifying connections between the structure of smooth- and rough-wall flows. Among other findings, the present analyses show promise toward providing a self-consistent and dynamically meaningful way of identifying the domain where the wall similarity hypothesis, if operative, should hold.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3