Direct Numerical Simulation of a Turbulent Boundary Layer Encountering a Smooth-to-Rough Step Change

Author:

Ismail Umair1ORCID

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

Using a direct numerical simulation (DNS), we investigate the onset of non-equilibrium effects and the subsequent emergence of a self-preserving state as a turbulent boundary layer (TBL) encounters a smooth-to-rough (STR) step change. The rough surface comprises over 2500 staggered cuboid-shaped elements where the first row is placed at 50 θ0 from the inflow. A Reθ=4500  value is attained along with δk≈35 as the TBL develops. While different flow parameters adjust at dissimilar rates that further depend on the vertical distance from the surface and perhaps on δSTR/k, an equilibrium for wall stress, mean velocity, and Reynolds stresses exists across the entire TBL by 35 δSTR after the step change. First-order statistics inside the inner layer adapt much earlier, i.e., at 10–15 δSTR after the step change. Like rough-to-smooth (RTS) scenarios, an equilibrium layer develops from the surface. Unlike RTS transitions, a nascent logarithmic layer is identifiable much earlier, at 4 δSTR after the step change. The notion of equivalent sandgrain roughness does not apply upstream of this fetch because non-equilibrium advection effects permeate into the inner layer. The emergent equilibrium TBL is categorized by a fully rough state (ks+≈120–130; ks/k≈2.8). Decomposition of wall stress into constituent parts reveals no streamwise dependence. Mean velocity in the outer layer is well approximated by Coles’ wake law. The wake parameter and shape factor are enhanced above their smooth-wall counterparts. Quadrant analysis shows that shear-stress-producing motions adjust promptly to the roughness, and the balance between ejections and sweeps in the outer layer remains impervious to the underlying surface.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference57 articles.

1. Simiu, E., and Yeo, D. (2019). Wind Effects on Structures, John Wiley & Sons. [4th ed.].

2. Turbine blade surface deterioration by erosion;Hamed;J. Turbomach.,2005

3. Representing surface roughness in eddy resolving simulation;Varghese;J. Fluid Mech.,2020

4. The response of a turbulent boundary layer to a step change in surface roughness Part 1. Smooth to rough;Antonia;J. Fluid Mech.,1971

5. Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers;Li;J. Fluid Mech.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct numerical simulation of momentum and scalar internal boundary layers;International Journal of Heat and Fluid Flow;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3