On the self-induced motion of a helical vortex

Author:

BOERSMA J.,WOOD D. H.

Abstract

The velocity field in the immediate vicinity of a curved vortex comprises a circulation around the vortex, a component due to the vortex curvature, and a ‘remainder’ due to the more distant parts of the vortex. The first two components are relatively well understood but the remainder is known only for a few specific vortex geometries, most notably, the vortex ring. In this paper we derive a closed form for the remainder that is valid for all values of the pitch of an infinite helical vortex. The remainder is obtained firstly from Hardin's (1982) solution for the flow induced by a helical line vortex (of zero thickness). We then use Ricca's (1994) implementation of the Moore & Saffman (1972) formulation to obtain the remainder for a helical vortex with a finite circular core over which the circulation is distributed uniformly. It is shown analytically that the two remainders differ by 1/4 for all values of the pitch. This generalizes the results of Kuibin & Okulov (1998) who obtained the remainders and their difference asymptotically for small and large pitch. An asymptotic analysis of the new closed-form remainders using Mellin transforms provides a complete representation by a residue series and reveals a minor correction to the asymptotic expression of Kuibin & Okulov (1998) for the remainder at small pitch.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calculation of the velocities induced by the trailing vorticity in the rotor plane of a horizontal-axis turbine or propeller;Frontiers in Energy Research;2024-02-23

2. DEVELOPMENT OF ANALYTICAL MODEL FOR DESCRIPTION OF SWIRLING FLOWS;Eurasian Journal of Mathematical and Computer Applications;2023-12

3. Solving propeller optimization problems by using helical vortex and exact penalty methods;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-06-22

4. The instability of a helical vortex filament under a free surface;Journal of Fluid Mechanics;2022-03-02

5. Review of Analytical Approaches for Simulating Motions of Helical Vortex;Frontiers in Energy Research;2022-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3