The instability of a helical vortex filament under a free surface

Author:

Li Cheng,Liu YumingORCID,Wan MinpingORCID,Chen Shiyi,Yue Dick K. P.ORCID

Abstract

We perform a theoretical investigation of the instability of a helical vortex filament beneath a free surface in a semi-infinite ideal fluid. The focus is on the leading-order free-surface boundary effect upon the equilibrium form and instability of the vortex. This effect is characterised by the Froude number $F_r = U(gh^*)^{-{1}/{2}}$ where $g$ is gravity, and $U = \varGamma /(2{\rm \pi} b^*)$ with $\varGamma$ being the strength, $2{\rm \pi} b^*$ the pitch and $h^*$ the centre submergence of the helical vortex. In the case of $F_r \rightarrow 0$ corresponding to the presence of a rigid boundary, a new approximate equilibrium form is found if the vortex possesses a non-zero rotational velocity. Compared with the infinite fluid case (Widnall, J. Fluid Mech., vol. 54, no. 4, 1972, pp. 641–663), the vortex is destabilised (or stabilised) to relatively short- (or long-)wavelength sub-harmonic perturbations, but remains stable to super-harmonic perturbations. The wall-boundary effect becomes stronger for smaller helix angle and could dominate over the self-induced flow effect depending on the submergence. In the case of $F_r > 0$ , we obtain the surface wave solution induced by the vortex in the context of linearised potential-flow theory. The wave elevation is unbounded when the $m$ th wave mode becomes resonant as $F_r$ approaches the critical Froude numbers ${\mathcal {F}} (m) = (C_0^*/U)^{-1} (mh^*/b^*)^{-{1}/{2}}$ , $m=1, 2, \ldots,$ where $C_0^*$ is the induced wave speed. We find that the new approximate equilibrium of the vortex exists if and only if $F_r < {\mathcal {F}}(1)$ . Compared with the infinite fluid and $F_r \rightarrow 0$ cases, the wave effect causes the vortex to be destabilised to super-harmonic and long-wavelength sub-harmonic perturbations with generally faster growth rate for greater $F_r$ and smaller helix angle.

Funder

China Scholarship Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3