Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers

Author:

TSUJI Y.,FRANSSON J. H. M.,ALFREDSSON P. H.,JOHANSSON A. V.

Abstract

Pressure fluctuations are an important ingredient in turbulence, e.g. in the pressure strain terms which redistribute turbulence among the different fluctuating velocity components. The variation of the pressure fluctuations inside a turbulent boundary layer has hitherto been out of reach of experimental determination. The mechanisms of non-local pressure-related coupling between the different regions of the boundary layer have therefore remained poorly understood. One reason for this is the difficulty inherent in measuring the fluctuating pressure. We have developed a new technique to measure pressure fluctuations. In the present study, both mean and fluctuating pressure, wall pressure, and streamwise velocity have been measured simultaneously in turbulent boundary layers up to Reynolds numbers based on the momentum thickness Rθ ≃ 20000. Results on mean and fluctuation distributions, spectra, Reynolds number dependence, and correlation functions are reported. Also, an attempt is made to test, for the first time, the existence of Kolmogorov's -7/3 power-law scaling of the pressure spectrum in the limit of high Reynolds numbers in a turbulent boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference81 articles.

1. Identification and analysis of vortical structures

2. MEMS-based pressure and shear stress sensors for turbulent flows

3. On the structure of pressure fluctuations in simulated turbulent channel flow

4. ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers

5. Alfredsson P. H. , Johansson A. V. & Kim J. 1988 Turbulence production near walls: the role of flow structures with spanwise asymmetry. Studying Turbulence Using Numerical Simulation Databases – II. Proc. 1988 Summer program, Center for Turbulence Research, Report CTR-S88.

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3