Affiliation:
1. Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
Abstract
The size of a pressure transducer is known to affect the accuracy of measurements of wall-pressure fluctuations beneath a turbulent boundary layer because of spatial averaging over the sensing area of the transducer. In this paper, the effect of finite transducer size is investigated by applying spatial averaging or wavenumber filters to a database of hypersonic wall pressure generated from a direct numerical simulation (DNS) that simulates the turbulent portion of the boundary layer over a sharp 7° half-angle cone at nominally Mach 8. A good comparison between the DNS and the experiment in the Sandia Hypersonic Wind Tunnel at Mach 8 is achieved after spatial averaging is applied to the DNS data over an area similar to the sensing area of the transducer. The study shows that a finite sensor size similar to that of the PCB132 transducer can cause significant attenuation in the root-mean-square and power spectral density (PSD) of wall-pressure fluctuations, and the attenuation effect is identical between cone and flat plate configurations at the same friction Reynolds number. The Corcos theory is found to successfully compensate for the attenuated high-frequency components of the wall-pressure PSD.
Funder
Sandia National Laboratories
Office of Naval Research
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献