On the streamwise velocity, temperature and passive scalar fields in compressible turbulent channel flows: a viewpoint from multiphysics couplings

Author:

Cheng ChengORCID,Fu LinORCID

Abstract

It is generally believed that the velocity and passive scalar fields share many similarities and differences in wall-bounded turbulence. In the present study, we conduct a series of direct numerical simulations of compressible channel flows with passive scalars and employ the two-dimensional spectral linear stochastic estimation and the correlation function as diagnostic tools to shed light on these aspects. Particular attention is paid to the relevant multiphysics couplings in the spectral domain, i.e. the velocity–temperature ( $u-T$ ), scalar–temperature ( $g-T$ ) and velocity–scalar ( $u-g$ ) couplings. These couplings are found to be utterly different at a given wall-normal position in the logarithmic and outer regions. Specifically, in the logarithmic region, the $u-T$ and $u-g$ couplings are tight at the scales that correspond to the attached eddies and the very large-scale motions (VLSMs), whereas the $g-T$ coupling is robust in the whole spectral domain. In the outer region, $u-T$ and $u-g$ couplings are only active at the scales corresponding to the VLSMs, whereas the $g-T$ coupling is diminished but still strong at all scales. Further analysis indicates that although the temperature field in the vast majority of zones in a channel can be roughly treated as a passive scalar, its physical properties gradually deviate from those of a pure passive scalar as the wall-normal height increases due to the enhancement of the acoustic mode. Furthermore, the deep involvement of the pressure field in the self-sustaining process of energy-containing motions also drives the streamwise velocity fluctuation away from a passive scalar. The current work is an extension of our previous study (Cheng & Fu, J. Fluid Mech., vol. 964, 2023, A15), and further uncovers the details of the multiphysics couplings in compressible wall turbulence.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3