Long-term organic and conventional farming effects on nutrient density of oats

Author:

Omondi Emmanuel ChiwoORCID,Wagner Marisa,Mukherjee Atanu,Nichols Kristine

Abstract

Abstract Declining nutrient densities of crops in the past 50–70 years have been attributed to unsound agricultural practices and plant breeding focus on yield rather than quality. Few studies have quantified the soil and nutritional quality of grains in organic and conventional farms and reported results are scarce and inconsistent. The Rodale Institute's Farming Systems Trial (FST) was established in 1981 to quantify the effects of long-term organic and conventional grain cropping systems and tillage practices. A 2014 study to quantify effects on the nutrient density of oat grains was integrated into three systems within the long-term trial: organic manure-based (MNR), organic legume-based (LEG), and conventional synthetic input-based (CNV), split between tilled (T) and no-till (NT) practices. Oat grains with hulls removed were analyzed for minerals (n = 24), vitamins (n = 24), amino acids (n = 24) and proteins (n = 24), while soil samples to a depth of 10 cm were analyzed for elemental minerals, and total carbon (C), nitrogen (N) and sulfur (S). Organic systems increased six out ten soil minerals whose concentrations were influenced by cropping systems: aluminum (Al), iron (Fe), chromium (Cr), calcium (Ca), barium (B) and strontium (Sr). All essential amino acids were greater in oat grains under LEG systems compared with other systems except lysine, histidine and methionine. Both LEG systems also increased 12 out of 13 non-essential amino acids in oat grains. Total oat N, C and S required for amino acid synthesis tended to be greater in organic systems. Soil N, C and S were highly correlated with total oat amino acids under organic systems compared to CNV. Organic LEG had significantly greater vitamin B1 than MNR and CNV. These results suggest that nutrient concentrations of oat grains were greater in organic systems compared to CNV systems, and the increase could be partially explained by the long-term soil management differences between the systems.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3