Reducing Tillage Affects Long-Term Yields but Not Grain Quality of Maize, Soybeans, Oats, and Wheat Produced in Three Contrasting Farming Systems

Author:

Pearsons Kirsten Ann,Omondi Emmanuel ChiwoORCID,Heins Brad J.ORCID,Zinati Gladis,Smith AndrewORCID,Rui Yichao

Abstract

Reducing tillage has been widely promoted to reduce soil erosion, maintain soil health, and sustain long-term food production. The effects of reducing tillage on crop nutritional quality in organic and conventional systems, however, has not been widely explored. One possible driver of crop nutritional quality might be the changing soil nitrogen (N) availability associated with reduced tillage in various management systems. To test how reducing tillage affects crop nutritional quality under contrasting conventional and organic farming systems with varied N inputs, we measured nutritional quality (protein, fat, starch, ash, net energy, total digestible nutrients, and concentrations of Ca, K, Mg, P, and S) of maize, wheat, oats, and soybeans harvested from a long-term trial comprised of three farming systems under two tillage regimes: a conventional grain system (CNV); a low-input organic grain system (LEG); and an organic, manure-based grain + forage system (MNR) under conventional full-tillage (FT) and reduced-till (RT) management. Although maize and wheat yields were 10–13% lower under RT management, grain quality metrics including protein, fat, starch, energy, and mineral concentrations were not significantly affected by reducing tillage. Differences in nutrient quality were more marked between farming systems: protein levels in maize were highest in the MNR system (8.1%); protein levels in soybeans were highest in the LEG system (40.4%); levels of protein (12.9%), ash (2.0%), and sulfur (1430 ppm) in wheat were highest in the CNV system, and oat quality was largely consistent between the LEG and MNR systems. As grain quality did not significantly respond to reducing tillage, other management decisions that affect nutrient availability appear to have a greater effect on nutrient quality.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3