Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy

Author:

Lee C. F.,Shieh T. J.

Abstract

AbstractIn this paper, a theory of Endochronic cyclic viscoplasticity of eutectic Tin/Lead (60Sn/40Pb) solder alloy under cyclically thermomechanical strain histories had been established. Under the conditions of isotropic and inelastically incompressible small deformation, the constitutive equation of deviatoric behavior was expressed as:here and the strain rate dependent intrinsic time scale and . Employing the experimental cyclic shear stress-strain curves of various testing temperature and frequency, all temp. dependent material parameters and ; and the temp.-freq. dependent material function were determined for temp. between 213K and 423K and freq. between 0.3Hz and 0.01Hz. Predicative capability of the theory were then challenged by a set of experiments with complicate strain history such as (i) Fast in tension/Slow in compression constant strain amplitude cyclic tests (ii) Slow-Fast-Slow constant amplitude cyclic tests. Through the excellent computational results, the present theory demonstrated that it can, not only play a vital role in the area of electronic solder mechanics, but also meet the needs of reliability analysis and life assessment in the electronic/photoelectronic packagings.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference21 articles.

1. Viscoplastic Deformation of 40 Pb/60Sn Solder Alloys—Experiments and Constitutive Modeling

2. Constitutive relations for tin-based solder joints

3. A Unified Constitutive Model Based on Distributed State Concept and Multi-Domain Method for Design and Reliability in Electronic Packaging;Rassaian;ASME EEP. Advances in Electronic Packaging,1999

4. A Systematic Method of Determining Material Function in the Endochronic Plasticity;Lee;J. Chinese Soc. Mech. Engng,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3