Temperature and Frequency Modified Fatigue Initiation Life of Solder Alloys Predicted by Endochronic Cyclic Damage-Coupled Viscoplasticity

Author:

Lee C. F.,Jeng S. I.,Liu M. T.

Abstract

ABSTRACTIn this paper, an evolution equation of cyclically internal damage in the intrinsic damage time scale after the threshold cycles N0 was extended by employing its damage parameters proposed to be dependent of frequency (v) and temperature (T) under cyclic fatigue loading. The resulting damage-coupled endochronic viscoplasticity can drive v and T modified power form equations of cyclic damage and its fatigue initiation life = N1 + N0. Under fatigue tests with T effect and N0 = 0, the power form equation of N1(T)/(Th), named as T-LCM (T modified Lee Coffin-Manson) equation for fatigue initiation life can bederived. The T modified factor (Th) depends on the T dependent material elastic modulus, the cyclicstress-strain response and the damage parameters. Theoretical predictions in the life data ofSn/3.8Ag/0.7Cu solder alloy under cyclic strain test with Tϵ [298,393] K were very well.Also under fatigue tests with v effect only, the power form equation of /v-LCM (v modified Lee-Coffin-Manson) equation for fatigue initiation life can be derived. The v modified parameter depends on the v dependent cyclic stress-strain response and the damage parameters. Theoreticalpredictions in the life data of 96.5Sn/3.5Ag solder alloy with surface cracking effect i.e. N0 ≠ 0 during cyclicstrain tests with v ϵ [0.001,1] Hz were quite well.Obviously, the values of power exponents C in the T-LCM and the v-LCM equations can not be determinedsimply by the least square method as in the Coffin-Manson empirical formulae. Also, they must bejustified by constrains imposed in the material parameters defining in the cyclic stress-strain response andthe accumulation behavior of cyclic damage.The resultant equations derived here and the Δ-LCM equation derived under Δ angle proportional cyclicstrain tests can be combined together to form a T-v-ΔLCM equation for fatigue life studies in the solderalloys using bulk specimens or BGA solider joint specimens.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3