Dietary patterns derived by reduced rank regression and non-communicable disease risk

Author:

Piernas CarmenORCID,Gao Min,Jebb Susan A.

Abstract

Most current nutrition policies and dietary recommendations still reflect decades of research addressing the mechanism of action or health risks of individual nutrients. Yet, most high-income countries including the UK are far from reaching the dietary intakes which are recommended for good health. Food-based dietary patterns (DPs) can help target specific combinations of foods that are associated with disease risk, recognising the coexistence of multiple nutrients within foods and their potential synergistic effects. Reduced rank regression (RRR) has emerged as a useful exploratory approach which uses a priori knowledge of the pathway from diet to disease to help identify DPs which are associated with disease risk in a particular population. Here we reviewed the literature with a focus on longitudinal cohort studies using RRR to derive DPs and reporting associations with non-communicable disease risk. We also illustrated the application of the RRR approach using data from the UK Biobank study, where we derived DPs that explained high variability in a set of nutrient response variables. The main DP was characterised by high intakes of chocolate and confectionery, butter and low-fibre bread, and low intakes of fresh fruit and vegetables and showed particularly strong associations with CVD, type 2 diabetes and all-cause mortality, which is consistent with previous studies that derived ‘Western’ or unhealthy DPs. These recent studies conducted in the UK Biobank population together with evidence from previous cohort studies contribute to the emerging evidence base to underpin food-based dietary advice for non-communicable disease prevention.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3