Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults

Author:

Batis Carolina,Mendez Michelle A,Gordon-Larsen Penny,Sotres-Alvarez Daniela,Adair Linda,Popkin Barry

Abstract

AbstractObjectiveWe examined the association between dietary patterns and diabetes using the strengths of two methods: principal component analysis (PCA) to identify the eating patterns of the population and reduced rank regression (RRR) to derive a pattern that explains the variation in glycated Hb (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR) and fasting glucose.DesignWe measured diet over a 3 d period with 24 h recalls and a household food inventory in 2006 and used it to derive PCA and RRR dietary patterns. The outcomes were measured in 2009.SettingAdults (n 4316) from the China Health and Nutrition Survey.ResultsThe adjusted odds ratio for diabetes prevalence (HbA1c≥6·5 %), comparing the highest dietary pattern score quartile with the lowest, was 1·26 (95 % CI 0·76, 2·08) for a modern high-wheat pattern (PCA; wheat products, fruits, eggs, milk, instant noodles and frozen dumplings), 0·76 (95 % CI 0·49, 1·17) for a traditional southern pattern (PCA; rice, meat, poultry and fish) and 2·37 (95 % CI 1·56, 3·60) for the pattern derived with RRR. By comparing the dietary pattern structures of RRR and PCA, we found that the RRR pattern was also behaviourally meaningful. It combined the deleterious effects of the modern high-wheat pattern (high intakes of wheat buns and breads, deep-fried wheat and soya milk) with the deleterious effects of consuming the opposite of the traditional southern pattern (low intakes of rice, poultry and game, fish and seafood).ConclusionsOur findings suggest that using both PCA and RRR provided useful insights when studying the association of dietary patterns with diabetes.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3