Solidification effects of snowfall on sea-ice freeze-up: results from an onsite experimental study

Author:

Toyota TakenobuORCID,Ono Takashi,Tanikawa Tomonori,Wongpan PatORCID,Nomura Daiki

Abstract

AbstractAlthough the effects of snow during sea-ice growth have been investigated for sea ice which is thick enough to accommodate dry snow, those for thin sea ice have not been paid much attention due to the difficulty in observing them. Observations are complicated by the presence of slush and its subsequent freeze-up, and the surface heat budget might be sensitive to the additional ice thickness. An onsite short-term land fast sea-ice freeze-up experiment in the Saroma-ko Lagoon, Hokkaido, Japan was carried out to examine the effects of snowfall on the structure and surface heat budget of thin sea ice, based on observational results and a 1-D thermodynamic model. We found that snowfall contributes to the solidification of the surface slush layer, contributing ice thickness that is comparable to the snowfall amount and affecting the crystal texture significantly. On the other hand, the basal ice growth rate and turbulent heat flux were not significantly affected, being <3.1 × 10−8 m s−1 and 3 W m−2, respectively. This finding may validate the omission in past studies of snow effect in estimating ice production rates in polynyas and has implications about the reconstruction of growth history from sample analysis.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference50 articles.

1. The importance of wind-blown snow redistribution to snow accumulation on Bellingshausen Sea ice

2. The size of wind-driven coastal polynyas

3. Ice growth and solar heating in springtime leads

4. On the growth of thin winter ice;Hasemi;Low Temperature Science, Series A,1974

5. Measurements of crystallographic orientations of sea ice;Kawamura;Low Temperature Science, Series A,1982

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3