Initial snow-ice formation on a laboratory scale

Author:

Zhaka VasiolaORCID,Bridges RobertORCID,Riska KajORCID,Hagermann AxelORCID,Cwirzen AndrzejORCID

Abstract

Abstract Snow ice (SI) forms from freezing wet snow, known as slush, and contributes to the thickness of level and brash ice. However, the mechanism of snow-slush-snow ice transformation has not been extensively investigated to date, despite the difference in the freezing rate of slush in comparison with water is important for estimating the ice thickness. In this study, we examined the growth of initial congelation ice (CI) and snow ice (SI) in a fresh water tank exposed to outdoor weather conditions in Luleå, northern Sweden. The tank of size 1.8 × 0.65 × 1.2 m in length, width and height was divided into two compartments to facilitate the simultaneous growth of CI and SI. A total of 12 experiments were conducted in the years 2021 and 2022. The transformation from slush to snow ice was achieved by submerging various amounts of snow in the compartments. It was observed that approximately 35% of the initial snow transformed into SI. Snow ice grew 4 mm°C−0.5 d−0.5 faster than congelation ice. The CI growth under SI was 1 mm°C−0.5 d−0.5 slower than the CI growth under CI. This study provides valuable insights for modelling snow-slush-snow ice transformation and designing future laboratory-scale experiments.

Funder

Total

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3