Changes in Sea Surface Temperature and Sea Ice Concentration in the Arctic Ocean over the Past Two Decades

Author:

Yang Meng123,Qiu Yubao23ORCID,Huang Lin234,Cheng Maoce13ORCID,Chen Jianguo1,Cheng Bin5ORCID,Jiang Zhengxin234

Affiliation:

1. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100049, China

3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Finnish Meteorological Institute, FI00101 Helsinki, Finland

Abstract

With global warming, the decrease in sea ice creates favorable conditions for Arctic activities. Sea surface temperature (SST) is not only an important driven factor of sea ice concentration (SIC) changes but also an important medium of the ocean–atmosphere interaction. However, the response of sea surface temperature to Arctic sea ice varies in different sea areas. Using the optimal interpolated SST data from the National Centers for Environmental Information (NCEI) and SIC data from the University of Bremen, the temporal and spatial characteristics of SST and SIC in the Arctic above 60°N and their relationship are studied, and the melting and freezing time of sea ice are calculated, which is particularly important for the prediction of Arctic shipping and sea ice. The results show that (1) the highest and lowest monthly mean Arctic SST occur in August and March, respectively, while those of SIC are in March and September. The maximum trends of SST and SIC changes are in autumn, which are +0.01 °C/year and −0.45%/year, respectively. (2) There is a significant negative correlation between the Arctic SST and SIC with a correlation coefficient of −0.82. (3) The sea ice break-up occurs on Day of the Year (DoY) 143 and freeze-up occurs on DoY 296 in the Arctic. The melting and freezing processes lasted for 27 days and 14 days, respectively. (4) The Kara Sea showed the strongest trend of sea ice melting at −1.22 d/year, followed by the Laptev Sea at −1.17 d/year. The delay trend of sea ice freezing was the most significant in the Kara Sea +1.75 d/year, followed by the Laptev Sea +1.70 d/year. In the Arctic, the trend toward earlier melting of sea ice is smaller than the trend toward later freezing.

Funder

National Key Research and Development Program of China

Innovative Research Program of the International Research Center of Big Data for Sustainable Development Goals

Strategic Priority Research Program of the Chinese Academy of Sciences

International Partnership Program of Chinese Academy of Sciences “Remote Sensing and Modeling of the Snow and Ice Physical Process

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3