Projected Sea Bottom Temperature Variability in the East China Shelf Seas by 2100

Author:

Qiao Shen1,Zhang Cuicui1,Wei Hao1,Lan Yifan1

Affiliation:

1. School of Marine Science and Technology, Tianjin University, Tianjin 300072, China

Abstract

Existing research has proven the increase in sea surface temperature (SST) due to global warming. However, the sea bottom temperature (SBT) may exhibit different characteristics in various regional seas. The East China Shelf Seas (ECSSs), which are important shelf seas in the Western Pacific, hold ecological significance when analyzing their SBT variations in a warming future. This article investigates both the interannual and interdecadal SBT variations from 2006 to 2100, utilizing the projection results from phase 5 of the Climate Model Intercomparison Project (CMIP5) sponsored by the Intergovernmental Panel on Climate Change (IPCC). We conducted an analysis of the interdecadal variation by comparing the SBTs from the 2030s, 2060s, and 2090s to the SBT observed in the 2010s. Our findings reveal a significant increase in SBT in the ECSSs. By 2100, the region is projected to experience enhanced warming of 1.18 °C. The springtime warming intensity of the Bohai Sea, reaching 1.92 °C, can be twice the rate of global ocean warming. The outer shelf of the ECSSs also exhibits significant increases in SBT. Through an analysis of the correlation between SBT and ocean currents, we investigate the potential mechanisms behind these observations. This paper provides insights into future SBT variations from both an interannual and interdecadal perspective, explaining the causes and the projected increase in environmental stresses on the benthic ecosystem over the next eighty years.

Funder

National Key Research and Development Program of China

Municipal Nature Science Foundation of Tianjin

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference41 articles.

1. Role of greenhouse gas in climate change;Manabe;Tellus A Dyn. Meteorol. Oceanogr.,2019

2. Global climate change and greenhouse effect;Mikhaylov;Entrep. Sustain. Issues,2020

3. Warming trend in northern East China Sea in recent four decades;Tang;Chin. J. Oceanol. Limnol.,2009

4. Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005);Yu;Bull. Am. Meteorol. Soc.,2010

5. How fast are the oceans warming?;Cheng;Science,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3