Speckle Suppression by Decoherence in Fluctuation Electron Microscopy

Author:

Rezikyan Aram,Jibben Zechariah J.,Rock Bryan A.,Zhao Gongpu,Koeck Franz A.M.,Nemanich Robert F.,Treacy Michael M.J.

Abstract

AbstractWe compare experimental fluctuation electron microscopy (FEM) speckle data with electron diffraction simulations for thin amorphous carbon and silicon samples. We find that the experimental speckle intensity variance is generally more than an order of magnitude lower than kinematical scattering theory predicts for spatially coherent illumination.We hypothesize that decoherence, which randomizes the phase relationship between scattered waves, is responsible for the anomaly. Specifically,displacement decoherencecan contribute strongly to speckle suppression, particularly at higher beam energies. Displacement decoherence arises when the local structure is rearranged significantly by interactions with the beam during the exposure. Such motions cause diffraction speckle to twinkle, some of it at observable time scales.We also find that the continuous random network model of amorphous silicon can explain the experimental variance data if displacement decoherence and multiple scattering is included in the modeling. This may resolve the longstanding discrepancy between X-ray and electron diffraction studies of radial distribution functions, and conclusions reached from previous FEM studies.Decoherence likely affects all quantitative electron imaging and diffraction studies. It likely contributes to the so-called Stobbs factor, where high-resolution atomic-column image intensities are anomalously lower than predicted by a similar factor to that observed here.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3