KrF Pulsed Laser Ablation of Thin Films Made from Fluorinated Heterocyclic Poly(Naphthyl-Imide)s

Author:

Damaceanu Mariana-Dana,Rusu Radu-Dan,Olaru Mihaela Adriana,Timpu Daniel,Bruma Maria

Abstract

AbstractAmong the many aspects of laser ablation, development of conical structures induced by excimer laser radiation on polyimide surfaces has been thoroughly investigated. Because the mechanisms that produce these surface textures are not fully understood, two theories, photochemical bond breaking and thermal reaction, have been introduced. Here we present the first study of ultraviolet laser ablation behavior of thin films made from fluorinated poly(naphthyl-imide)s containing oxadiazole rings and the investigation of the mechanism of cone-like structure formation at two laser fluences, 57 and 240 mJ/cm2. The morphology of thin films before and after laser ablation was studied by using various spectroscopy techniques such as Fourier transform infrared spectroscopy, time-resolved emission and X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. All of the data suggest impurities shielded at low fluence radiation (57 mJ/cm2) and a radiation hardening process at high value fluence (240 mJ/cm2), which are proposed as the main mechanisms for laser ablation of our polyimide films, and we bring evidence to support them.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Reference45 articles.

1. Surface electromagnetic waves in optics

2. Fast photography of XeCl laser-induced plasma of graphite in vacuum and in nitrogen atmosphere

3. Quantification of polyimide carbonization after laser ablation

4. Excimer laser ablation of polyimide in a manufacturing facility

5. Ablative photodecomposition of polymer films by pulsed far-ultraviolet (193 nm) laser radiation: Dependence of etch depth on experimental conditions;Srinivasan;J Polym Sci Part A1,1984

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3