New High-Performance Materials: Bio-Based, Eco-Friendly Polyimides

Author:

Dan Rusu Radu,J.M. Abadie Marc

Abstract

The development of high-performance bio-based polyimides (PIs) seems a difficult task due to the incompatibility between petrochemical-derived, aromatic monomers and renewable, natural resources. Moreover, their production usually implies less eco-friendly experimental conditions, especially in terms of solvents and thermal conditions. In this chapter, we touch some of the most significant research endeavors that were devoted in the last decade to engineering naturally derived PI building blocks based on nontoxic, bio-renewable feedstocks. In most cases, the structural motifs of natural products are modified toward amine functionalities that are then used in classical or nonconventional methods for PI synthesis. We follow their evolution as viable alternatives to traditional starting compounds and prove they are able to generate eco-friendly PI materials that retain a combination of high-performance characteristics, or even bring some novel, enhanced features to the field. At the same time, serious progress has been made in the field of nonconventional synthetic and processing options for the development of PI-based materials. Greener experimental conditions such as ionic liquids, supercritical fluids, microwaves, and geothermal techniques represent feasible routes and reduce the negative environmental footprint of PIs’ development. We also approach some insights regarding the sustainability, degradation, and recycling of PI-based materials.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3