Oscillating behaviour of laminar separation bubble formed on an aerofoil near stall

Author:

Rinoie K.,Takemura N.

Abstract

AbstractLaminar separation bubbles formed on NACA 0012 aerofoil near the onset of a stall were investigated to clarify the behaviour of the laminar separation bubble. Measurements were done at a chord Reynolds number of 1·3 × 105. Mean velocity measurements indicate that the long bubble of about 35% chord length is formed at α = 11·5° after the short bubble burst occurred. However, the instantaneous flow visualisation picture indicates that the flow is strongly oscillating at this angle of attack. The phase averaging technique has been applied to analyse this oscillating behaviour. The results indicate that the flow is oscillating between a small separation-reattachment bubble formed near the leading-edge at about a 10% chord length and a large separated region extending over the aerofoil surface. It is suggested that this small separation-reattachment bubble has a similar flow structure to that of the short bubble formed at a lower angle of attack.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data assimilation and linear analysis with turbulence modelling: application to airfoil stall flows with PIV measurements;Theoretical and Computational Fluid Dynamics;2024-06

2. Connecting transonic buffet with incompressible low-frequency oscillations on aerofoils;Journal of Fluid Mechanics;2024-02-23

3. Experiments on the unsteady massive separation over an aerofoil;Physical Review Fluids;2023-12-07

4. Generation of negative peak pressures under a separation bubble;Journal of Wind Engineering and Industrial Aerodynamics;2023-05

5. Passive Flow Control of Ahmed Body using Control Rod;International Journal of Automotive and Mechanical Engineering;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3