A natural low-frequency oscillation of the flow over an airfoil near stalling conditions

Author:

Zaman K. B. M. Q.,Mckinzie D. J.,Rumsey C. L.

Abstract

An unusually low-frequency oscillation in the flow over an airfoil is studied experimentally as well as computationally. Wind-tunnel measurements are carried out with two-dimensional airfoil models in the chord Reynolds number (Rc) range of 0.15 × 105−3.0 × 105. During deep stall, at α [gsim ] 18°, the usual ‘bluff-body shedding’ occurs at a Strouhal number, Sts ≈ 0.2. But at the onset of static stall around α = 15°, a low-frequency periodic oscillation is observed, the corresponding Sts being an order of magnitude lower. The phenomenon apparently takes place only with a transitional state of the separating boundary layer. Thus, on the one hand, it is not readily observed with a smooth airfoil in a clean wind tunnel, while on the other, it is easily removed by appropriate ‘acoustic tripping’. Details of the flow field for a typical case are compared with a case of bluff-body shedding. The flow field is different in many ways from the latter case and does not involve a Kármán Vortex street. The origin of the flow fluctuations traces to the upper surface of the airfoil and is associated with a periodic switching between stalled and unstalled states. The mechanism of the frequency selection remains unresolved, but any connection to blower instabilities, acoustic standing waves or structural resonances has been ruled out.A similar result has been encountered computationally using a two-dimensional Navier–Stokes code. While with the assumption of laminar flow, wake oscillation akin to the bluff-body shedding has been observed previously, the Sts is found to drop to about 0.03 when a ‘turbulent’ boundary layer is assumed. Details of the flow field and unsteady forces, computed for the same conditions as in the experiment, compare reasonably well with the experimental data.The phenomenon produces intense flow fluctuations imparting much larger unsteady forces to the airfoil than that experienced in bluff-body shedding, and may represent the primary aerodynamics of stall flutter of blades and wings.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Brooks, T. F. & Schlinker, R. H. ,1983 Progress in rotor broadband noise research.Vertica 7,287–307.

2. Zaman, K. B. M. Q. :1985 Far-field noise of a subsonic jet under controlled excitation.J. Fluid Mech. 152,83–111.

3. Schlichting, H. :1979 Boundary Layer Theory .McGraw-Hill.

4. Zaman, K. B. M. Q. , Bar-Sever, A. & Mangalam, S. M. 1987 Effect of acoustic excitation on the flow over a low-Re airfoil.J. Fluid Mech. 182,127–148.

5. Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1984 Natural large-scale structures in the axisymmetric mixing layer.J. Fluid Mech. 138,325–351.

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3