Passive Flow Control of Ahmed Body using Control Rod

Author:

AHMET ŞUMNU

Abstract

In the current study, numerical analysis of passive control flow with a control rod for Ahmed body is performed at different slant angles and velocities and placed rod locations on the slant surface. The aim of the study is to improve aerodynamic performance by preventing flow separation on the slant surface of Ahmed body using a control rod. This passive flow control method uses a control rod that has not been applied for simplified ground vehicles before. Therefore, it can be said that this study is a new example in point of a passive flow control application for Ahmed body. The solution of the study is performed by using the Computational Fluid Dynamics (CFD) method. The solutions are firstly performed for baseline geometry, and the results are compared with experimental data reported in the literature for validation. CFD solutions are carried out by means of the ANSYS and RNG k- turbulence model is used to simulate flow-field since it captures the effect of turbulent flow. The solutions used a control rod with a 20 mm diameter performed at a dimensionless location (X/L=0.057 and 0.153) for Ahmed body. The results are presented visually in the figures, and drag coefficient values are also given in Table format. It is concluded that the rod application is useful for some specified slant angles and velocities since flow separation delays and suppresses the slant surface. The maximum drag reduction is achieved at about 6.153% at a slant angle of 35° and 20 m/s velocity of air, and location of control rod of 0.057, while the minimum drag reduction is about 1.048% at slant angle of 25° and velocity of air at 40 m/s and location of control rod of 0.153.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3