Simulations of turbulent channels with prescribed velocity profiles

Author:

Tuerke Florian,Jiménez Javier

Abstract

AbstractDirect numerical simulations of turbulent channels with artificially prescribed velocity profiles are discussed, using both natural and purposely incorrect profiles. It is found that turbulence develops correctly when natural profiles are prescribed, but that even slightly incorrect ones modify the Reynolds stresses substantially. That is used to study the dynamics of the energy-containing velocity fluctuations. The stronger (weaker) structures generated by locally stronger (weaker) mean shears have essentially correct isotropy coefficients but they are out of energy equilibrium, with the energy imbalance compensated by turbulent diffusion. The velocity scale in smooth profiles changes with the distance to the wall, and is best described by a friction velocity derived from the local total tangential stress. The behaviour across sharper shear jumps is more consistent with non-equilibrium eddies that relax over wall-normal distances of the order of the distance to the wall, suggesting that the energy equilibrium in the logarithmic layer is not local to a given height, but applies to extended layers homogenized by wall-normal fluxes. Examples of that non-local character are the large-scale inactive fluctuations near the wall, whose velocities do not scale with the local shear stress, but with that of their active ‘cores’ farther away from the wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. The local structure of turbulence in incompressible viscous fluids a very large Reynolds numbers;Kolmogorov;Dokl. Akad. Nauk SSSR,1941

2. Equilibrium layers and wall turbulence

3. ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers

4. Turbulent Flows

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3