A Perron–Frobenius analysis of wall-bounded turbulence

Author:

Jiménez JavierORCID

Abstract

The Perron–Frobenius operator (PFO) is adapted from dynamical-system theory to the study of turbulent channel flow. It is shown that, as long as the analysis is restricted to the system attractor, the PFO can be used to differentiate causality and coherence from simple correlation without performing interventional experiments, and that the key difficulty remains the collection of enough data to populate the operator matrix. This is alleviated by limiting the analysis to two-dimensional projections of the phase space, and developing a series of indicators to choose the best parameter pairs from a large number of possibilities. The techniques thus developed are applied to the study of bursting in the inertial layer of the channel, with emphasis on the process by which bursts are reinitiated after they have decayed. Conditional averaging over phase-space trajectories suggested by the PFO shows, somewhat counter-intuitively, that a key ingredient for the burst recovery is the development of a low-shear region near the wall, overlaid by a lifted shear layer. This is confirmed by a computational experiment in which the control of the mean velocity profile by the turbulence fluctuations is artificially relaxed. The behaviour of the mean velocity profile is thus modified, but the association of low wall shear with the initiation of the bursts is maintained.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3