Author:
Liao Yang,Ouellette Nicholas T.
Abstract
AbstractUsing filter-space techniques (FSTs), we study the spatial structure of the scale-to-scale flux of energy in two-dimensional flow. Analysing data from a weakly turbulent, experimental quasi-two-dimensional flow, we find rotationally symmetric patterns consisting of lobes of spectral flux of alternating sign that are associated with vortical motion in the flow field. Such patterns also occur in a simple analytical model, even though the single-scale model flow should have no scale-to-scale energy transfer. Thus, the interpretation of these alternating patterns must be handled with care. By decomposing the spectral flux into three distinct components, we show that these lobe patterns are entirely associated with the Leonard and, to a lesser extent, cross terms. In addition, we show that the contributions from these two terms are localized around the energy injection scale, and that the bulk of the inverse energy transfer in our flow is carried by the subgrid term alone.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献