Coherent structure detection and the inverse cascade mechanism in two-dimensional Navier–Stokes turbulence

Author:

Wang JiahanORCID,Sesterhenn JörnORCID,Müller Wolf-ChristianORCID

Abstract

Coherent structures in two-dimensional Navier–Stokes turbulence are ubiquitously observed in nature, experiments and numerical simulations. The present study conducts a comparison between several structure detection schemes based on the Okubo–Weiss criterion, the vorticity magnitude and Lagrangian coherent structures (LCSs), focusing on the inverse cascade in two-dimensional hydrodynamic turbulence. A recently introduced vortex scaling phenomenology (Burgess & Scott, J. Fluid Mech., vol. 811, 2017, pp. 742–756) allows the quantification of the respective thresholds required by these methods based on physical properties of the flow. The resulting improved comparability allows us to identify characteristic relative differences in the detection sensitivity between the employed structure detection techniques. With respect to the inverse cascade of energy, coherent structures contribute, as expected, substantially less to the cross-scale flux than the residual incoherent parts of the flow although the energetically dominant coherent structures lead to an important large-scale deformation of the energy spectrum. This cascade inactivity can be understood by an increased misalignment of strain-rate and subgrid stress tensors within coherent structures. At the same time, the structures exhibit strong and localised nonlinear cross-scale interactions that appear to stabilise them. We quantify and interpret the resulting shape preservation of coherent structures in terms of a multi-scale gradient approach (Eyink, J. Fluid Mech., vol. 549, 2006, pp. 191–214) as the depletion of strain rotation and vorticity gradient stretching whereas the dynamics of the residual fluctuations are consistent with the vortex thinning picture.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gromov–Wasserstein Transfer Operators;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3