Affiliation:
1. Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, PA 15261 , USA
Abstract
Abstract
It has been proposed that biologically generated turbulence plays an important role in material transport and ocean mixing. Both experimental and numerical studies have reported evidence of the nonnegligible mixing by moderate Reynolds number swimmers, such as zooplankton, in quiescent water, especially at aggregation scales. However, the interaction between biologically generated agitation and the background flow, as a key factor in biologically generated turbulence that could reshape our previous knowledge of biologically generated turbulence, has long been ignored. Here, we show that the geometry between the biologically generated agitation and the background hydrodynamic shear can determine both the intensity and direction of biologically generated turbulent energy flux. Measuring the migration of a centimeter-scale swimmer—as represented by the brine shrimp Artemia salina—in a shear flow and verifying through an analog experiment with an artificial jet revealed that different geometries between the biologically generated agitation and the background shear can result in spectral energy transferring toward larger or smaller scales, which consequently intensifies or attenuates the large-scale hydrodynamic shear. Our results suggest that the long ignored geometry between the biologically generated agitation and the background flow field is an important factor that should be taken into consideration in future studies of biologically generated turbulence.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献