Horizontal convection dynamics: insights from transient adjustment

Author:

Griffiths Ross W.,Hughes Graham O.,Gayen Bishakhdatta

Abstract

AbstractThe dynamics of horizontal convection are revealed by examining transient adjustment toward thermal equilibrium. We restrict attention to high Rayleigh numbers (of $O(1{0}^{12} )$) and a Prandtl number ${\sim }5$ that characterize many practical applications, and consider responses to small changes in the thermal boundary conditions, using laboratory experiments, three-dimensional direct numerical simulations (DNS) and simple theoretical models. The experiments and the mechanical energy budget from the DNS demonstrate that unsteady forcing can produce flow dramatically more active than horizontal convection under steady forcing. The physical mechanisms at work are indicated by the time scales of approach to the new equilibrium, and we show that these can range over two orders of magnitude depending on the imposed change in boundary conditions. Changes that lead to a net destabilizing buoyancy flux give rapid adjustments: for applied heat flux conditions the whole of the circulation is controlled by conduction through the stable portion of the boundary layer, whereas for applied temperature difference the circulation is controlled by small-scale convection within the unstable part of the boundary layer. The experiments, DNS and models are in close agreement and show that the time scale under applied temperatures is as small as 0.01 vertical diffusion time scales, a factor of four smaller than for imposed flux. Both cases give adjustments too rapid for diffusion in the interior to play a significant role, at least through 99 % of the adjustment, and we conclude that diffusion through the full depth is not significant in setting the equilibrium state. Boundary changes leading to a net stabilizing buoyancy flux give a very different response, causing the convection to quickly form a shallow circulation cell, followed eventually by a return to full-depth overturning through a combination of penetrative convection and conduction. The time scale again varies by orders of magnitude, depending on the boundary conditions and the location of the imposed boundary perturbation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3