Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection

Author:

Zhao Chao-BenORCID,Wang Bo-FuORCID,Wu Jian-ZhaoORCID,Chong Kai LeongORCID,Zhou QuanORCID

Abstract

In this paper, we report that reversals of the large-scale circulation in two-dimensional Rayleigh–Bénard (RB) convection can be suppressed by imposing sinusoidally distributed heating to the bottom plate. We examine how the frequency of flow reversals depends on the dimensionless wavenumber $k$ of the spatial temperature modulation with various modulation amplitude $A$ . For sufficiently large $k$ , the flow reversal frequency is close to that in the standard RB convection under uniform heating. However, when $k$ decreases, the frequency of flow reversal gradually becomes lower and can even be largely reduced. Furthermore, we examine the growth of the corner roll and the global flow structure based on Fourier mode decomposition, and reveal that the size of the corner roll diminishes as the wavenumber decreases. The reason is that the regions occupied by the cold phase can absorb heat from the hot plumes and thus lower their temperature, which reduces the corner roll's kinetic energy input provided by the buoyancy force, and weakens the feeding process of the corner rolls. This results in the locking of the corner roll into a smaller region near the corner, making it harder for a reversal to occur. Using the concept of horizontal convection caused by non-uniform heating, we find a relevant parameter $k/A$ to describe briefly how the reversal frequency depends on wavenumber and modulation amplitude. The present work provides a new way to control the flow reversals in RB convection through modifying temperature boundary conditions.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3