VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS

Author:

Wunsch Carl1

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;,

Abstract

▪ Abstract The coexistence in the deep ocean of a finite, stable stratification, a strong meridional overturning circulation, and mesoscale eddies raises complex questions concerning the circulation energetics. In particular, small-scale mixing processes are necessary to resupply the potential energy removed in the interior by the overturning and eddy-generating process. A number of lines of evidence, none complete, suggest that the oceanic general circulation, far from being a heat engine, is almost wholly governed by the forcing of the wind field and secondarily by deep water tides. In detail however, the budget of mechanical energy input into the ocean is poorly constrained. The now inescapable conclusion that over most of the ocean significant “vertical” mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing. Whether ocean circulation models, either simple box or full numerical ones, neither explicitly accounting for the energy input into the system nor providing for spatial variability in the mixing, have any physical relevance under changed climate conditions is at issue.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 1209 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3