Effect of microstructural anisotropy on the fluid–particle drag force and the stability of the uniformly fluidized state

Author:

Holloway William,Sun Jin,Sundaresan Sankaran

Abstract

AbstractLattice-Boltzmann simulations of fluid flow through sheared assemblies of monodisperse spherical particles have been performed. The friction coefficient tensor extracted from these simulations is found to become progressively more anisotropic with increasing Péclet number, $Pe= \dot {\gamma } {d}^{2} / D$, where $\dot {\gamma } $ is the shear rate, $d$ is the particle diameter, and $D$ is the particle self-diffusivity. A model is presented for the anisotropic friction coefficient, and the model constants are related to changes in the particle microstructure. Linear stability analysis of the two-fluid model equations including the anisotropic drag force model developed in the present study reveals that the uniformly fluidized state of low Reynolds number suspensions is most unstable to mixed mode disturbances that take the form of vertically travelling waves having both vertical and transverse structures. As the Stokes number increases, the transverse-to-vertical wavenumber ratio decreases towards zero; i.e. the transverse structure becomes progressively less prominent. Fully nonlinear two-fluid model simulations of moderate to high Stokes number suspensions reveal that the anisotropic drag model leads to coarser gas–particle flow structures than the isotropic drag model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning‐Based Filtered Drag Model for Cohesive Gas‐Particle Flows;Chemical Engineering & Technology;2023-05-09

2. Multiscale modeling of gas-fluidized beds;Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows;2023

3. Fluid‐Driven Transport of Round Sediment Particles: From Discrete Simulations to Continuum Modeling;Journal of Geophysical Research: Earth Surface;2022-07

4. Effect of particle orientation on the drag force in random arrays of oblate ellipsoids in low‐Reynolds ‐number flows;AIChE Journal;2020-09-16

5. Mesoscale drag modeling: a critical review;Current Opinion in Chemical Engineering;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3