Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield

Author:

Lun C. K. K.,Savage S. B.,Jeffrey D. J.,Chepurniy N.

Abstract

The flow of an idealized granular material consisting of uniform smooth, but nelastic, spherical particles is studied using statistical methods analogous to those used in the kinetic theory of gases. Two theories are developed: one for the Couette flow of particles having arbitrary coefficients of restitution (inelastic particles) and a second for the general flow of particles with coefficients of restitution near 1 (slightly inelastic particles). The study of inelastic particles in Couette flow follows the method of Savage & Jeffrey (1981) and uses an ad hoc distribution function to describe the collisions between particles. The results of this first analysis are compared with other theories of granular flow, with the Chapman-Enskog dense-gas theory, and with experiments. The theory agrees moderately well with experimental data and it is found that the asymptotic analysis of Jenkins & Savage (1983), which was developed for slightly inelastic particles, surprisingly gives results similar to the first theory even for highly inelastic particles. Therefore the ‘nearly elastic’ approximation is pursued as a second theory using an approach that is closer to the established methods of Chapman-Enskog gas theory. The new approach which determines the collisional distribution functions by a rational approximation scheme, is applicable to general flowfields, not just simple shear. It incorporates kinetic as well as collisional contributions to the constitutive equations for stress and energy flux and is thus appropriate for dilute as well as dense concentrations of solids. When the collisional contributions are dominant, it predicts stresses similar to the first analysis for the simple shear case.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Ogawa, S. , Umemura, A. & Oshima, N. 1980 On the equations of fully fluidized granular materials.Z. angew. Math. Phys. 31,483–493.

2. Present, R. D. 1958 Kinetic Theory of Gases .McGraw-Hill.

3. Campbell, C. S. & Brennen, C. E. 1982 Computer simulation of shear flows of granular material. In Proc. 2nd U.S.-Japan Seminar on New Models and Constitutive Relations in the Mechanics of Granular Material .Elsevier.

4. Brush, S. G. 1972 Kinetic Theory , vol. 3.Pergamon.

5. Campbell, C. S. 1982 Shear flow of granular materials. Ph.D. dissertation,Calif. Inst. Tech.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3